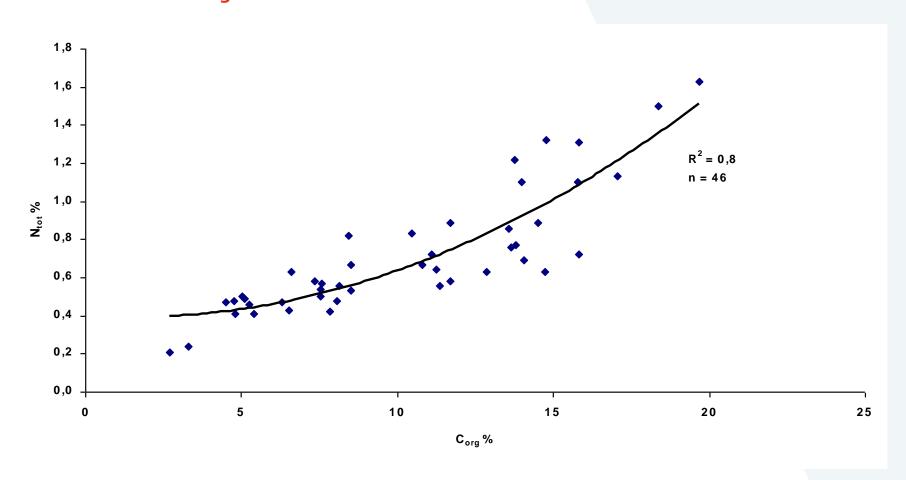
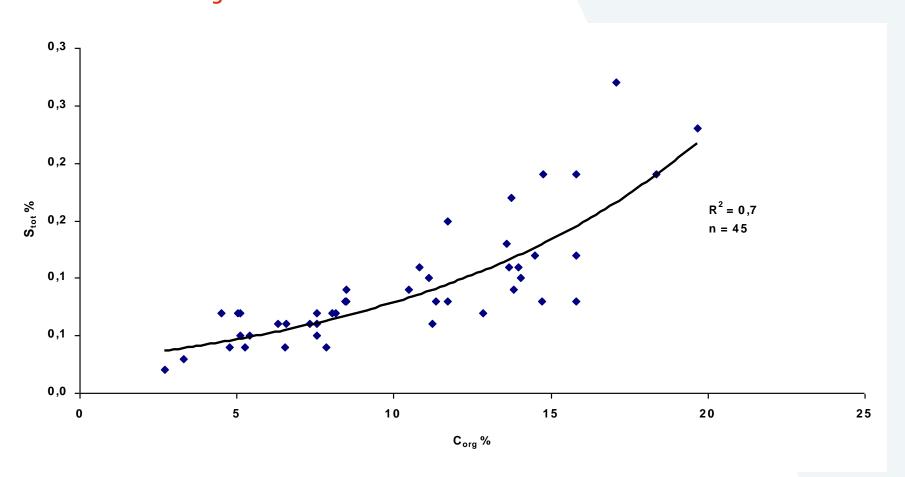


Humusdynamik im Dauergrünland



Andreas Bohner Abteilung Umweltökologie


Humus – Bedeutung für das Grünlandökosystem

- Nahrungs- und Energiequelle für heterotrophe Bodenorganismen
- erhöht die biologische Aktivität im Boden
- Nährstoffträger (N, S, P)
- Speicher f
 ür Wasser und Pflanzennährelemente (pH-abhängig)
- Puffersubstanz (pH-Wert, Mineralstoffe)
- schützt vor Aluminium- und Schwermetall-Toxizität
- trägt zur Ausbildung einer günstigen Bodenstruktur bei (krümelige Struktur)
- vermindert die Lagerungsdichte und erhöht das Porenvolumen eines Bodens
- vermindert die Verdichtungsempfindlichkeit eines Bodens (höhere mechanische Belastbarkeit)

Beziehung C_{org} - N_{tot}

Beziehung C_{org} - S_{tot}

Bodenchemische Kennwerte (arithmetischer Mittelwert; n = 106) von Böden unter Dauergrünland in der Bodentiefe 0-10 cm. * Annahme: Lagerungsdichte = 1.10 g cm⁻³; Bodentiefe: 0-10 cm.

рН	C _{org}	N_{t}	P _t	S _t	N_{t}	P _t	S _t
_CaCl ₂	_	g k	(g ⁻¹			kg ha-1*	
5.8	43	5.1	1.2	0.5	5610	1320	550

$$C_{org}$$
: 43 g kg⁻¹ = 7.4% Humus

 $5610 \times 1.5 \% \rightarrow 84 \text{ kg N ha}^{-1}$

Humusarten

Nährhumus

- abgestorbene Pflanzen und Pflanzenteile, Bröckelverluste bei der Heuernte, Mulchmaterial, abgestorbene Bodenlebewesen, Wirtschaftsdünger, Exkremente der Weidetiere, Wurzelausscheidungen
- wird von Bodenorganismen rasch (innerhalb weniger Wochen oder Monate) abgebaut
- bevorzugte Nahrungs- und Energiequelle für die meisten Bodenorganismen und somit Voraussetzung für eine hohe biologische Aktivität (Gesamtheit der im Boden ablaufenden biologischen Prozesse) im Boden

Dauerhumus

- wird von Bodenorganismen sehr langsam abgebaut (verweilt Jahrhunderte bis Jahrtausende lang im Boden)
- verursacht die dunkle Farbe im A-Horizont von Böden
- fördert die biologische Aktivität im Boden, indem er günstige Lebensbedingungen für Bodenorganismen schafft
- dient den Bodenorganismen als langsam fließende, kontinuierliche Nahrungsund Energiequelle

Ausgangsmaterial für die Humusbildung

- Humus besteht zu ungefähr 58% aus Kohlenstoff
- Kohlenstoff ist im bodenbildenden Gestein nicht oder nur geringfügig enthalten und wird daher durch Verwitterung kaum angereichert.
- Der Kohlenstoffeintrag mit dem Niederschlag ist gering.

Humus entsteht im Grünlandboden vor allem durch Zersetzung von abgestorbenen Wurzeln und Wurzelteilen.

Unterirdische Phytomasse

Böden unter Dauergrünland

- hohe Wurzelmasse
- Der Großteil der Pflanzenwurzeln (über 75%)
 befindet sich in den obersten 10 cm des Bodens.
- Unterhalb von 50 cm Bodentiefe kommen nur mehr wenige Pflanzenwurzeln vor.

Unterirdische Phytomasse

Wurzelmasse und räumliche Wurzelverteilung im Boden

- Artenzusammensetzung im Pflanzenbestand
- Bodeneigenschaften
- Klima (Temperatur, Niederschlag)
- Intensität der Grünlandbewirtschaftung

Unterirdische Phytomasse

Intensität der Grünlandbewirtschaftung

- Je häufiger eine Nutzung durch Mahd oder Beweidung erfolgt, desto geringer werden Wurzelmasse und Wurzeltiefgang.
- Düngung vermindert die Wurzelmasse in erster Linie durch Änderungen in der Artenzusammensetzung im Pflanzenbestand.
- Bodenverdichtung hemmt das Wurzelwachstum.
- Auf einem verdichteten, nährstoffreichen Boden wachsen flachwurzelnde Pflanzenarten mit geringer Wurzelmasse.
- Eine Intensivierung der Grünlandbewirtschaftung bewirkt vor allem durch Änderungen in der Artenzusammensetzung des Pflanzenbestandes eine Verminderung der unterirdischen Phytomasse und gleichzeitig auch eine relativ stärkere Anreicherung in der Tiefenstufe o 5 cm.

Humusgehalt und Humusmenge

- Eintragsmenge an organischer Substanz (insbesondere abgestorbene Pflanzenwurzeln und Wurzelteile, Wurzelausscheidungen, Bröckelverluste bei der Heuernte (im Durchschnitt 10-20%), Wirtschaftsdünger, Exkremente der Weidetiere)
- Mineralisierung und Humifizierung der organischen Substanz

Mineralisierung und Humifizierung

- vom Standort und von der Qualität des Nährhumus abhängig
- ungünstige Standortsbedingungen (Wassermangel, Sauerstoffmangel, geringer Nährstoffgehalt im Boden, niedrige Bodentemperatur, niedriger Boden-pH-Wert) und schwer abbaubarer Nährhumus

gehemmte Mineralisierung

hoher Humusgehalt bzw. große Humusmenge im Boden

Humusgehalt und Humusmenge

- Seehöhe
- Relief
- Klima (Temperatur, Niederschlag)
- Bodenwasserhaushalt
- Bodenart, Bodentyp, Bodenskelettgehalt, Bodengründigkeit, Lagerungsdichte
- Vegetation (Art und Menge der ober- und unterirdischen Bestandesabfälle, räumliche Verteilung der Wurzelmasse im Boden)
- Art, Dauer und Intensität der historischen sowie gegenwärtigen Bewirtschaftung
- Düngung (Art, Menge)

Kalkbraunlehm

Kohlenstoffgehalt und Kohlenstoffmenge in Böden des Dauergrünlandes (A-Horizont, o-10 cm Bodentiefe) in Abhängigkeit von der Wasserhaushaltsstufe

	C _{org} (%)			C _{org} (kg ha ⁻¹)*				
	halbtrocken	frisch	feucht	nass	halbtrocken	frisch	feucht	nass
n	32	463	146	138	32	463	146	138
Minimum	2,7	2,1	2,0	3,8	27200	21324	19800	38400
Maximum Arithmetischer	10,1	18,4	44,1	53,3	101200	184400	441000	532700
Mittelwert	6,8	6,6	9,7	32,5	67700	65800	97400	325100
Median	6,6	6,2	8,2	36,2	66300	62209	81700	362400

n = Anzahl der Bodenanalysen

 C_{org} (%) x 1,724 = Humus (%)

^{*}Annahme: Lagerungsdichte = 1 g cm⁻³

Eine Einrichtung des Bundesministeriums für Land- und Forstwirtschaft, Klima- und Umweltschutz, Regionen und Wasserwirtschaft

Typischer Gley

Niedermoor

C_{orq}-Vorrat in Böden (o-50 cm Bodentiefe)

	kg C m ⁻²	
Waldböden Auflagehumus	1.5	
Mineralboden	11	
Dauergünlandböden	5-12	
Ackerböden	6	
Moorböden	50	(Schätzung)

Grünlandökosystem

- Mehr als 85% vom gesamten C-Vorrat im Grünlandökosystem befindet sich im Boden → Boden ist wichtigster C-Speicher im Grünlandökosystem
- C-Entzug durch Mahd oder Beweidung: jährlich 1-4% vom C-Vorrat im Boden

Humusaufbau

Düngung

Rindermistgabe von 10 t ha-1 (praxisübliche Mistausbringungsmenge)

- C-Zufuhr von ca. 130 g C m⁻² (weniger als 2% der C-Vorräte im Boden)
- Humuskoeffizient für Stallmist: 0.25 (Gisi, 1990)
- ca. 33 g C m⁻² (weniger als 0.5% der C-Vorräte im Boden) können in Dauerhumus umgewandelt werden!

Mikrobieller Kohlenstoff

Datum	Tiefenstufe	Variante	μg C/g trockener
	(cm)		Boden
19.08.2021	0-5	Stallmist + Jauche	60
19.08.2021	0-5	NPK	42
19.08.2021	0-5	Brache	55
13.09.2021	0-5	Stallmist + Jauche	138
13.09.2021	0-5	NPK	50
13.09.2021	0-5	Brache	110
19.08.2021	5-10	Stallmist + Jauche	30
19.08.2021	5-10	NPK	30
19.08.2021	5-10	Brache	10
13.09.2021	5-10	Stallmist + Jauche	95
13.09.2021	5-10	NPK	35
13.09.2021	5-10	Brache	80

Zusammenfassung

- Die Böden unter Dauergrünland sind meist sehr humusreich.
- In Grünlandböden werden beträchtliche C-Mengen (>40%) im Unterboden gespeichert (großes Bodenvolumen).
- Im Grünlandboden besteht kein Humusmangel, wenn der dunkelbraun bis schwarz gefärbte A-Horizont mehr als 10 cm mächtig ist.
- In fruchtbaren Grünlandböden ist das C:N-Verhältnis im Oberboden niedriger als 12:1.
- Humusgehalt und Humusmenge werden in erster Linie vom Bodenwasserhaushalt bestimmt.
- Eine regelmäßige Düngung mit Wirtschaftsdünger (Mist, Kompost) ist notwendig, um den Humusgehalt in Grünlandböden zu erhalten.

Zusammenfassung

- Durch Mahd ohne Düngung oder Überbeweidung verringert sich der Humusgehalt.
- Eine Humusanreicherung im Oberboden (Humusaufbau) durch organische Düngung (Mist, Kompost) erfolgt im Dauergrünland nur sehr langsam und in geringem Maße, weil die jährliche C-Zufuhr mit dem Dünger im Vergleich zum C-Vorrat im Boden sehr gering ist (unter 2%).
- Die humussteigernde Wirkung einer Düngung resultiert im Dauergrünland ausschließlich aus der C-Zufuhr mit dem Wirtschaftsdünger und nicht aus einer größeren Menge an Streustoffen.
- Die Düngung (regelmäßige Zufuhr von N-reichem Nährhumus) dient im Dauergrünland weniger zum Humusaufbau, sondern vielmehr zur Steigerung der biologischen Aktivität im Boden.

Schlussfolgerung

- Die Bodenfruchtbarkeit wird im Dauergrünland maßgeblich vom jährlichen Humusumsatz im Boden bestimmt.
- Regelmäßige Zufuhr von N-reichem Nährhumus → Bodenleben wird aktiviert und gefördert → Dauerhumus wird verstärkt abgebaut (Priming-Effekt), Humusumsatz im Boden wird beschleunigt → intensivere Nährelementnachlieferung aus dem organischen Bodenspeicher → erhöhtes Pflanzenwachstum.
- Optimierung statt Maximierung (Humusumsatz beschleunigen)!