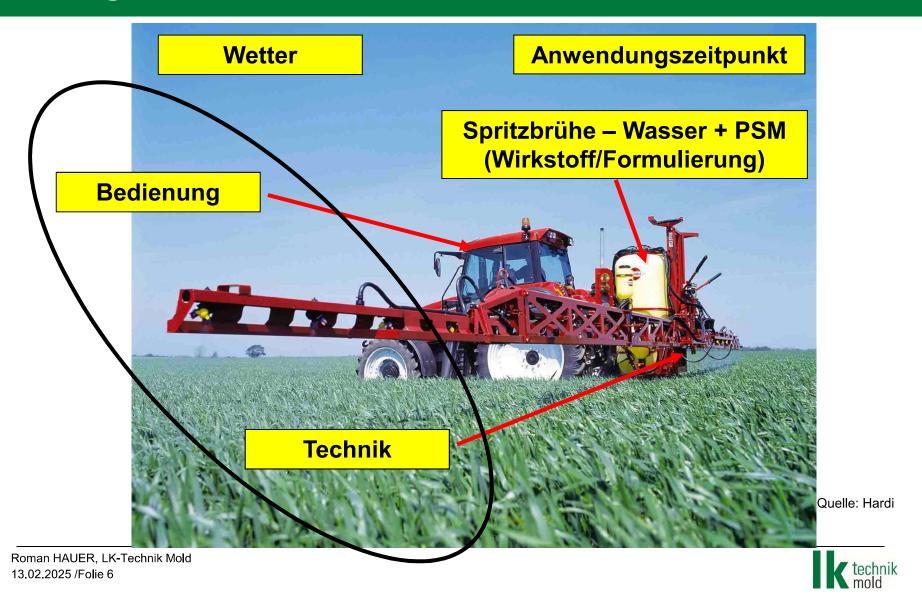


Aufgabenbereiche

LK-Technik Mold – Pflanzenschutztechnik

Beratung zum Gerätekauf Beratung zur "Düsentechnik- und Düsenauswahl" Pflanzenschutz-Sachkundekurse und Weiterbildungen Pflanzenschutztechnik-Seminare und Vorträge Österreichweite Kontrollpersonalschulungen Wiederkehrende Kontrolle von PS-Geräten Vermietung Prüfset für Feld- und Raumkulturen ÖAIP-Typenprüfung für Feldspritzgeräte Gerätecheck für Landwirte GÜTEZEICHEN



Vortragsinhalt

- Überlegungen zur Düsenauswahl
- Zielflächencheck am Beispiel Ungrasbekämpfung
- Aktuelle abdriftmindernde Düsentechnik richtig einsetzen
- Abdrift effektiv reduzieren
- Fehler vermeiden
- Feldspritze auf die Saison vorbereiten

Erfolgreicher Pflanzenschutz durch...

Düsentechnik – entscheidende Aufgaben

→ Die Düse ist ein relativ kostengünstiger Bauteil, der die Qualität der Ausbringung entscheidend beeinflusst. Daher ist die richtige Düsenauswahl und der fachgerechte Einsatz und Pflege der vorhandenen Düsentechnik von großer Bedeutung!

Das Tropfengrößenspektrum beeinflusst die Anlagerung und Abdriftminderung!

- Tropfengröße wird durch Düsenbauart und –größe und Druck vorgegeben
- PSM, Additive, Wasserqualität,... beeinflussen zusätzlich
- Druck an der Düse ist entscheidend
- Verschiedene Düsenbauformen produzieren bei gleichem Volumenstrom verschiedene Tropfenspektren

Düsentechnik optimieren – Parameter auf die Zielfläche abstimmen am Beispiel Ungräser

- Resistente Ungräser stelle hohen Anforderungen
- Unterschiedliche Zielflächen je nach Mittel und Anwendungszeitpunkt
- Applikation im Vorauflauf oder Nachauflauf

Beispiel Bekämpfung von AF, Raygras... in Getreide

Bodenherbizide im Vorauflauf oder sehr frühen Nachauflauf

Wirkstoffaufnahme vorrangig über Boden, Hypokotyl & Keimblatt

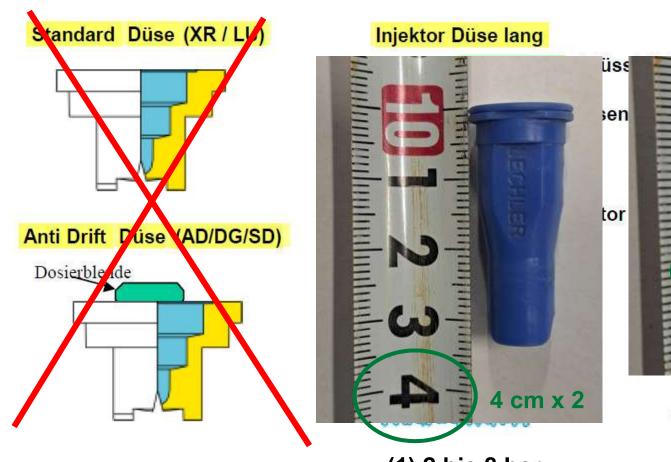
• Blattherbizide nur im frühen Nachauflauf

Wirkstoffaufnahme über Boden & Blatt

Zielflächencheck - Bodenherbizide im Vorauflauf bzw. sehr früher Nachauflauf Herbst

- Ziel: Gleichmäßige <u>Verteilung</u> auf der Zielfläche
- Hohe Ansprüche an <u>Bodenbearbeitung und Bodenfeuchte</u>
- Abdriftarme Applikation (90 %) anstreben
- Tropfengröße sehr grob bis extrem (ultra) grob
- Wasseraufwandmenge <u>250 bis 300 l/ha</u>
- Bei grober Struktur Doppelflachstrahltechnik nutzen
- Niedriger bis mittlerer Arbeitsdruck

Düsen:


- Spezielle Vorauflaufdüsen
- Lange Injektordüsen
- Kurze Injektordüsen im unteren Druckbereich

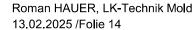
Zielflächencheck - Blattherbizide im frühen Nachauflauf Frühjahr


- Ziel: Gleichmäßige <u>Verteilung und Anlagerung</u> auf der Zielfläche
- Kleine, schmale, senkrechte, oft abgeschattete Zielflächen
- Kaum behaarte Blätter, zusätzliche kristalline Wachsauflagerung
- → <u>Schlechtes Tropfenhaltevermögen</u>
- Trefferquote optimieren → hohe Tropfenanzahl → <u>Druck erhöhen</u> mittlere bis grobe Tropfen
- Applikationstechnik: <u>DF-Düsen</u> oder <u>abwechselnde Fahrtrichtung</u>
- Optimale Bedingungen anstreben wüchsig, feucht, trockener Bestand
- Wasseraufwandmenge
 - niedriger bei optimalen Bedingungen für bessere Wirkung der blattaktiven
 Wirkstoffe 200 I/ha
 - Eventuell anpassen auf 250 l/ha (warme Hochdrucklagen, niedrige LF, windig)
- Düsen:
 - Kurze oder lange Injektordoppelflachstrahldüsen

Überblick Düsentechnik Ackerbau Kombination Düse und Druck entscheidend!

Venturi Prinzip

(1) 2 bis 8 bar


4 bis 7 (8) bar

1 bis 6 bar

2 bis 4 (5) bar

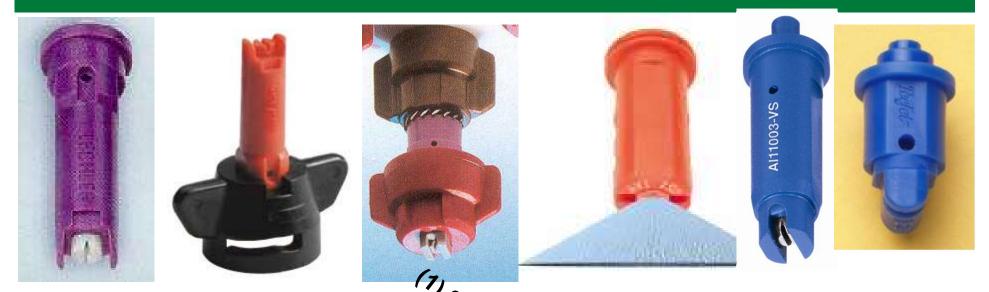
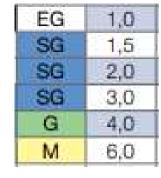

Quelle: Duch, Bayer Crop Science

Foto: Hauer

Lange Injektordüsen – Lechler ID, Hardi Injet, Agrotop TD, Teejet Al/AIC, Albuz AVI, Teejet TTI

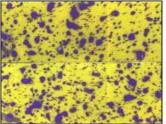
- ✓ enges Tropfengrößenspektrum
- ✓ MVD 350 bis 600 µm
- ✓ sehr stark reduzierter Feintropfenanteil
- ✓ sehr geringe Abdriftgefahr
- ✓ Anerkennung als abdriftmindernde Düse
 (50, 75 und 90 %, je nach Hersteller und Größe!!)
- ✓ 10 bis 11 mm Schlüsselweite28 bis 42 mm lang
- ✓ weiter Druckbereich → für wechselnde
 FG und WA gut geeignet

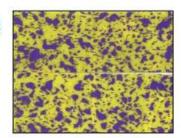
Kompakte Injektordüsen – Lechler IDK, Hardi MD, Agrotop Airmix, Teejet AIXR, Albuz CVI, ...


- ✓ geringe Abdriftgefahr (im unteren Druckbereich)
- ✓ Anerkennung als abdriftmindernde Düse
 (50, 75 und 90 % je nach Hersteller und Größe)
- √ 8 mm Schlüsselweite, 22 mm lang
- ✓ Eher konstante Fahrgeschwindigkeit
- ✓ "Kompromissdüse"

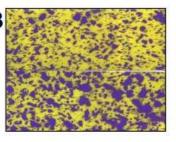
Unterschied lange und kurze Injektordüsen

UG	2.0
EG	3,0
SG	4,0
SG	5,0
SG	6,0
SG	7,0
SG	8.0

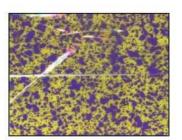



ID3 120-03

2,5 bar


IDK 120-03

2 bar


ID3 120-03

5 bar

IDK 120-03

4 bar

Roman HAUER, LK-Technik Mold 13.02.2025 /Folie 17

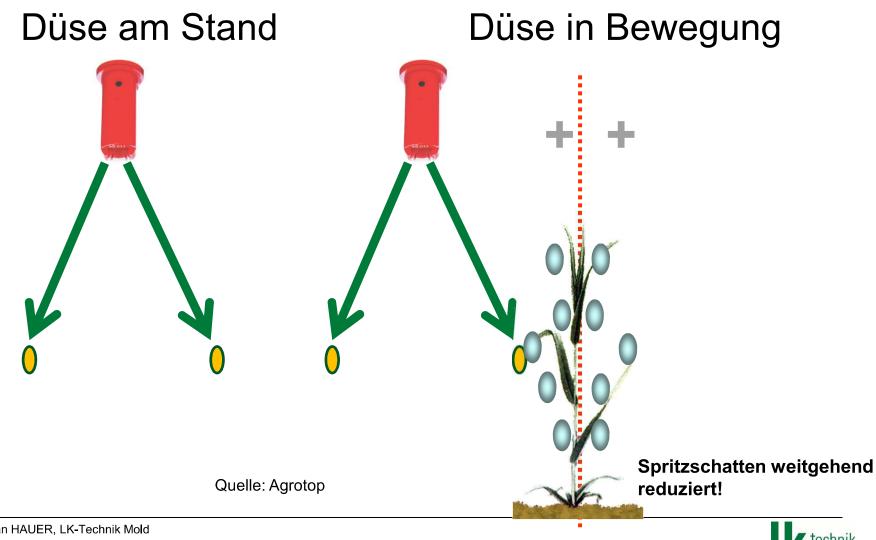
Quelle: Lechler

Injektordüsen 2. und 3. Generation

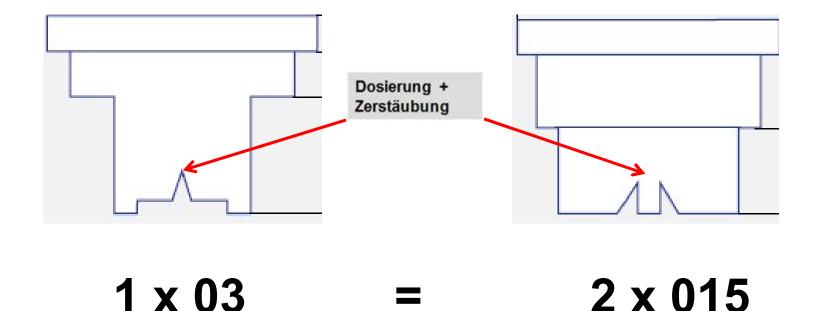
Lechler IDN 025/03*

Lechler IDKN 03/04*

Neu Hardi Nanodrift


extrem grobtropfig im unteren Druckbereich

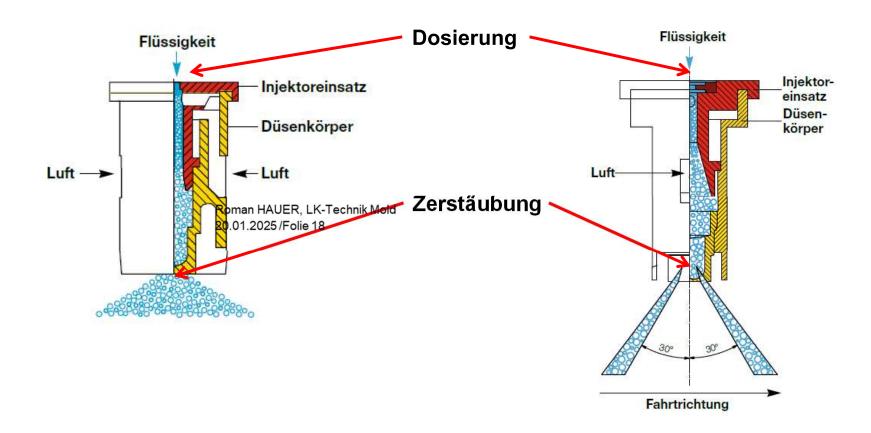
Quelle: Lechler, Hardi



ID3

Tropfenflugbahn symmetrische Doppelflachstrahlinjektordüse

"alte" Doppelflachstrahltechnik



Probleme mit Verstopfen und hoher Abdrift!!!

Quelle: Lechler

Aktuelle Doppelflachstrahltechnik – Injektordoppelflachstrahldüse

Ähnliche Tropfen wie einstrahlige Ausführung, oft eine Spur feiner!

Quelle: Lechler

Symmetrische Doppfelflachstrahldüsen mit Injektortechnik kompakt

06

90 %

03

04

Lechler IDKT

Hardi Minidrift Duo

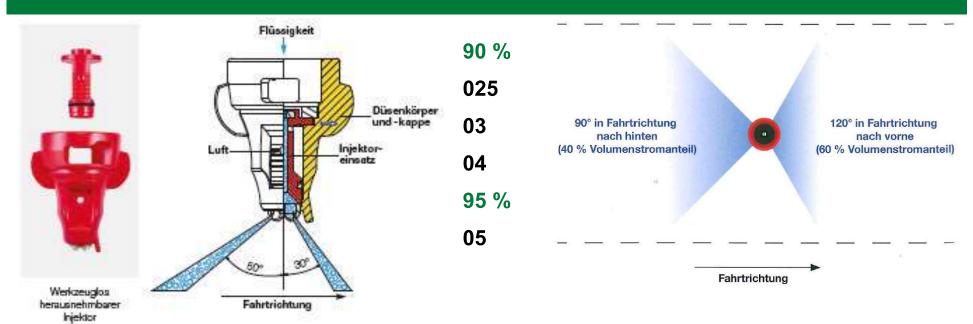
Albuz CVI Twin

- ✓ Optimaldruck 2 bis 4 (5) bar
- √ 50, 75 u. 90 % Abdriftminderung (je nach Größe)
- √ 8 mm Schlüsselweite, 22 mm lang

Symmetrische Doppelflachstrahldüsen mit Injektortechnik lang

Quelle: Teejet, Agrotop

- ✓ Optimaldruck 4 bis 7 (8) bar
- √ 50, 75 und 90 % (nicht AVI Twin) Abdriftminderung
- ✓ 11 mm Schlüsselweite, 20 mm (AITTJ u. TTI 60) bzw. 28 mm (AVI Twin) lang
- √ TTI 60 Düsen-Kappenkombination


Asymmetrische Doppelflachstrahldüse mit Injektortechnik lang

Quelle: Agrotop

Asymmetrische Doppelflachstrahldüse mit Injektortechnik lang

- ✓ Optimaldruck 4 bis 8 bar
- ✓ Düsenkappenkombination mit werkzeuglos herausnehmbarem Injektor
- ✓ unterschiedlicher Spritzwinkel und Volumenstrom in und gegen FR
- ✓ Tropfengrößen grob bis extrem grob
- ✓ Abdriftmindernd anerkannt bis 95 %

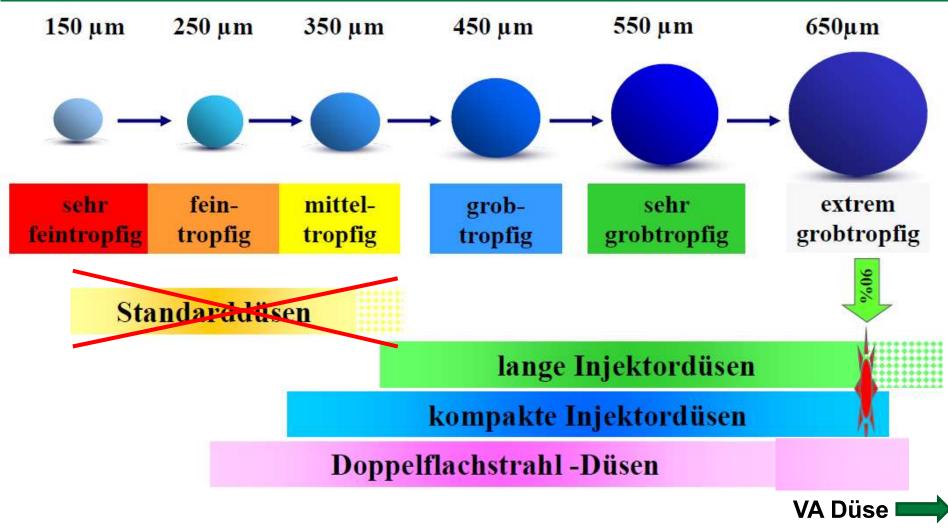
Quelle: Lechler

Spezielle Vorauflaufdüse Lechler PRE 130-05 bzw. Syngenta 130-05

95 % Abdriftminderung bis 5 bar 90 % Abdriftminderung bis 6 bar

Für die Anwendung von Bodenherbiziden im Vorauflauf bzw. sehr frühen Nachauflauf und Flüssigdünger

Neu: Doppelflachstrahlausführung

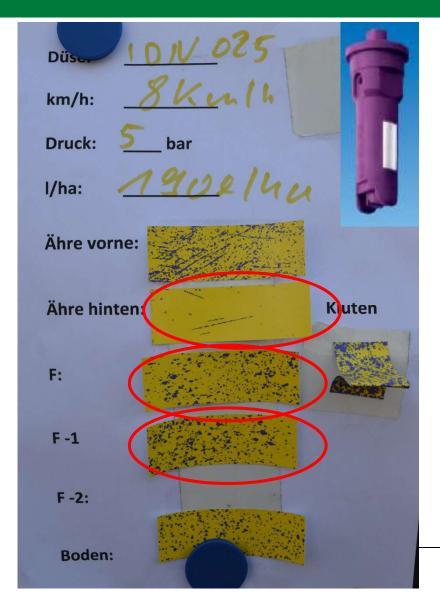


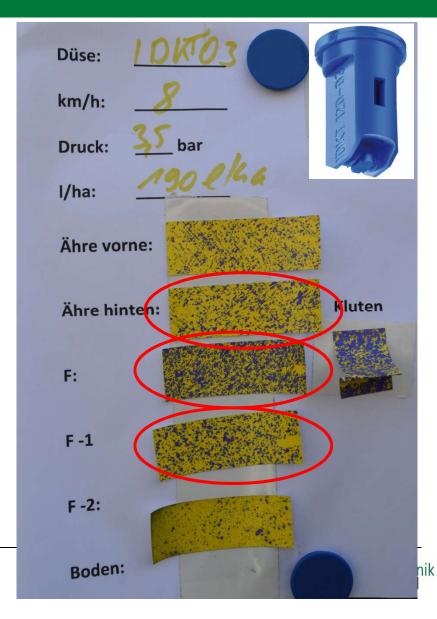
- ✓ Druckbereich 1,5 bis 8 bar
- ✓ keine Injektordüse → gute Eignung für PWM
- ✓ Doppelflachstrahl 40°/40°
- ✓ Düsen-Kappenkombination
- ✓ Spritzschattenreduktion bei gleichzeitig starker Abdriftminderung
- ✓ Bodenherbizide im VA und frühen NA
- √ Vollsystemische Fungizide
- √ Flüssigdünger

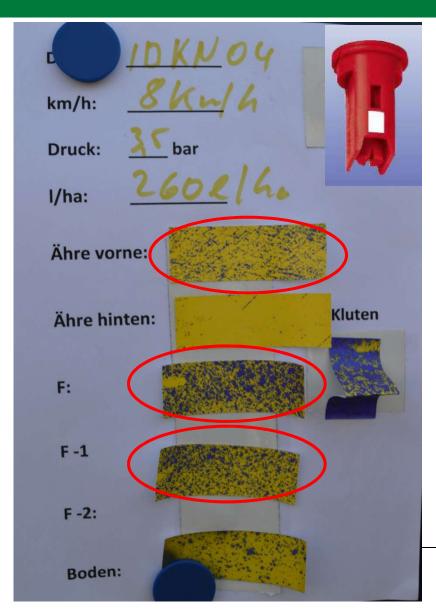
Quelle: Lechler

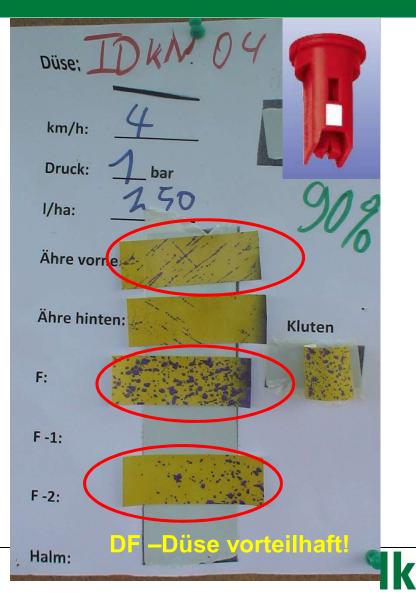
Tropfengrößen Überblick

Praxisversuch Spritzbildvergleich verschiedener Düsen

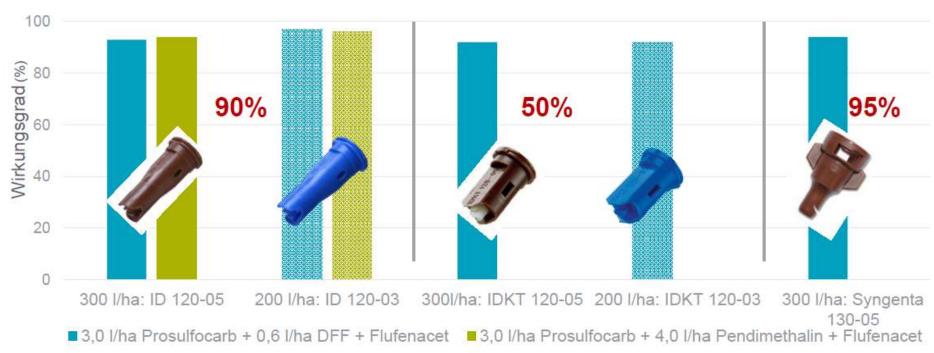

Foto: Hauer


Watersensitive Paper




8 km/h, 190 l/ha IDN 120 025, 5 bar IDKT 120 03, 3,5 bar

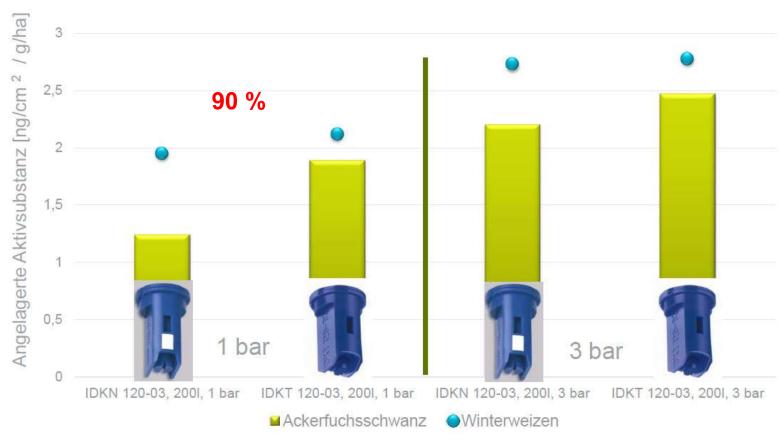
IDKN 120 04, 260 l/ha 8 km/h, 3,5 bar 4 km/h, 1 bar



Ergebnisse Ackerfuchsschwanzbekämpfung im Vorauflauf Herbst

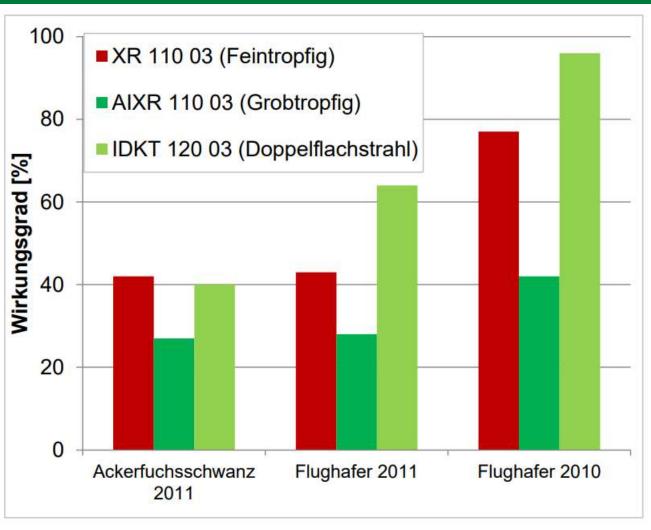
Vorauflauf: Einfluss der Wassermenge auf die Wirkung

Behandlung: 27.10.2016, Ackerfuchsschwanz: BBCH 09 - 11, W-Weizen: BBCH 10 - 11, Bonitur: 22.03.2017


- keine Wirkungsunterschiede zwischen 200 und 300 I/ha
- geringe Unterschiede zwischen den Düsen
- Düsen mit 90 und 95 % gewährleisten ausreichende Wirksamkeit und verringern die Abdrift
- stabilere Wirkung bei h\u00f6heren WA und gem\u00e4\u00dfigter FG

Bodenherbizide Vorauflauf Herbst – stabile Wirkung mit ausreichend Wasser und gemäßigter Fahrgeschwindigkeit

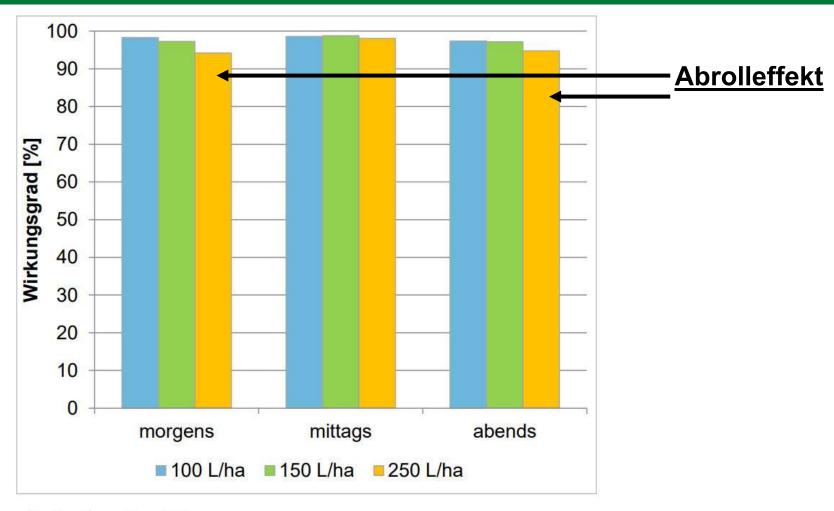
Ergebnisse Ackerfuchsschwanzbekämpfung im Nachauflauf Frühjahr


Optimale Einstellung von Druck und Düse für schwierige Zielflächen erforderlich

Quelle: Syngenta

- DF-Düsen verbessern die Anlagerung auch bei 90 % Einstellung
- WA mind. 200 I/ha, düsenangepasster Druck außerhalb der Randbereiche

Wirkstoffanlagerung in Abhängigkeit von der eingesetzten Düsentechnik

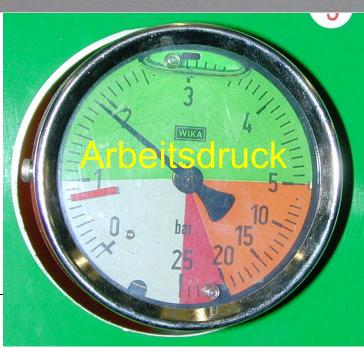


Grobtropfige DF-Düsen weisen bei schwierigen Zielflächen wie Ungräsern eine mindestens gleichwertig Anlagerung wie feintropfige Düsen auf bei gleichzeitg stark reduzierter Abdrift!

Quelle: Knewitz & Strub: Grobe Tropfen erfordern eine Doppelflachstrahldüse. LW 15/2013

Ungrasbekämpfung mit blattaktiven Mitteln im Nachauflauf – aufpassen bei taufeuchten Pflanz.

Quelle: Bayer, Crop Science



Vorgehensweise bei der Düsenauswahl im Ackerbau – Parameter richtig abstimmen

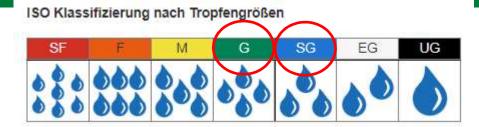
1. Auswahl der Wasseraufwandmenge entsprechend der jeweiligen Anwendung

-	V 0	Pflanzenschutzmaßnahme	Tropfengröße	Spritzdruck	WA (I/ha)*	Düsengröße Injektordüsen (6) 7 bis 8 km/h		
	ropfen- pektrum					kurz	lang	
	mittel- bis	Herbizide, NAK, Zuckerrübe (DF)	mittel	hoch	150 - 200	025 - 03**	02 - 025	
		Kontaktfungizide Getreide, Zuckerrübe	mittel	hoch	250 - 300	03 - 04	025 - 03	
44444		späte Fungizidanwendungen Getreide,	mittel	hoch	200	025 - 03	02 - 025	
		Nachauflaufherbizide Getreide (DF)	mittel - grob	mittel - hoch	$-200 \mathrm{I}$	>200 l/ha		
		Insektizide (DF)	mittel - grob	mittel - hoch	200 -250	025 - 03 - 04	02 - 025 - 03	
		Nachauflaufherbizide Mais	mittel - grob	mittel - hoch				
	grob- bis sehr grob- tropfig	Totalherbizide (Glyphosat) (DF)	grob	mittel	100 - 200	02 - 025 - 03	015 - 02 - 02	
		Rapsfungizide (vor der Blüte)	grob	mittel - hoch	201700000000000000000000000000000000000	03 - 04	025 - 03	
		Fungizidanwendungen Getreide bis zum Ende des Schossens	grob	mittel - hoch				
		Wachstumsregler	grob	mittel				
5		Rapsblütenbehandlung (DF)	grob-sehr grob	mittel - hoch	300 - 400	04 - 05	03 - 04	
		Kartoffelfungizide (DF)	grob-sehr grob	mittel - hoch				
		Sikkation (Kartoffel) (DF)	grob- sehr grob	mittel	> 400	05 - 06	04 - 05	
5	sehr grob- bis extrem	Bodenherbizide Vorauflauf (VA/DF) (Raps, Kartoffel, Getreide etc.)	sehr grob- extrem grob	niedrig	250 - 300	04 - 05	03 - 04	

2. Fahrgeschwindigkeit wählen

...dabei berücksichtigen:

- Technik (Gestängestabilität)
- Bodenverhältnisse
- Durchdringung (Zielfläche)
- Witterungsverhältnisse
- gute fachliche Praxis bis 8 km/h
- hohe Fahrgeschwindigkeit bewirkt höhere Abdrift


3. Einzeldüsenausstoß berechnen

$$\frac{200 \text{ l/ha x 0,5 m x 8 km/h}}{600} = 1,33 \text{ l/min}$$

4. Düsengröße je nach Bauart so wählen, dass der optimale Druckbereich eingehalten wird

Düsengröße	-01	-015	-02	-025	-03	-04	-05	-06	-08	-10
Betriebsdruck (bar)				5.4	3.8	2.1	1.4			
Air-Injektor Flachstrahldüse ID3				66	50	5				
Asymmetrische Air-Injektor Doppelflachstrahldüse IDTA				60	50	6	•			
Air-Injektor Kompakt-Flachstrahldüse IDK				000	000	55	00			
Air-Injektor Kompakt-Flachstrahldüse IDKN					50	5				
Air-Injektor Kompakt-Doppelflachstrahldüse IDKT				000	50	6	00			
Mehrbereichs-Flachstrahldüse LU					000	000	000			
Antidrift-Flachstrahldüse AD					000	000				

kurze ID 2 bis 4 (5) bar

lange ID 4 bis 7 (8) bar

Quelle: Lechler

5. Zur Einhaltung der Anwendungsbestimmungen ggf. Druck und Fahrgeschwindigkeit anpassen

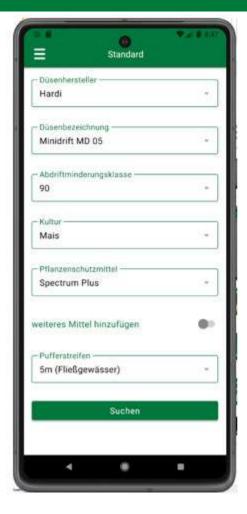
	Abdrif tmind erung	V- Num- mer	Gerätetyp	Verwendungsbestimmungen	Beschreibung der Eintragung	Verwen- dungsbe- reiche	Antrag steller
	50 %	301-01	Feldspritzgeräte mit Düse Lechler IDKT 120-03 POM	In einem 20 m breiten Randbereich mit einem Druck bis 4,0 bar spritzen, Zielflächenabstand 50 cm.	Druckbereich 1,0 bis 6,0 bar	A,G,R,Z Seite	LEC 24
	75 %	301-02	mit Düse Lechler IDKT 120-03 POM	In einem 20 m breiten Randbereich mit einem Druck bis 2,0 bar spritzen, Zielflächenabstand 50 cm.	Druckbereich 1,0 bis 6,0 bar	A,G,R,Z Seite	LEC 78
(90 %	301-03	Feldspritzgeräte mit Düse Lechler IDKT 120-03 POM	In einem 20 m breiten Randbereich mit einem Druck bis 1,5 bar spritzen, Zielflächenabstand 50 cm.	Druckbereich 1,0 bis 6,0 bar	A,G,R,Z Seite	LEC 130

https://www.baes.gv.at/zulassung/pflanzenschutzmittel/abdriftmindernde-geraete

Bundesamt für Ernährungssicherheit BAES

JKI – Verzeichnis verlustmindernder Geräte online

https://daps.julius-kuehn.de/komplettVerlustminderung


Abdriftminderu ngsklasse	Dokumente -	V-Nummer 💠	G-Nummer 💠	Gerätetyp	Verwendungsbe stimmungen	Verwendungsbe reiche	Antragsteller	Beschreibung der Eintragung	Adresse Antragsteller
Abdriftminderungs		V-Nummer	G-Nummer	Lechler IDKT 120-	Verwendungsbestir	Alles	Alles ▼	Beschreibung der E	Adresse Antragste
75 %		⊘ V0367 - 04	⊙ G1932	Düse Lechler IDKT 120-03 C plus 6 x Lechler IDKN 120-03 POM	einem Druck von 1,5 bar spritzen, Zielflächenabstand 50 cm.	Gemüsebau, Zierpflanzenbau, Grünland	LEC - Lechler GmbH	bis 6,0 bar, 6 x IDKN 120-03 POM zum Einbau im Mittelteil der Gerätegestänge	Tropfenabscheider, Ulmer Straße 128, 72555 Metzingen
90 %		⊘ V0206 - 07	⊘ G1787	Feldspritzgeräte mit Düse Lechler IDKT 120-03 POM in Verbindung mit Randdüse Lechler IDKS 80-03 POM	In einem 20 m breiten Randbereich mit einem Druck bis 1,5 bar spritzen, Zielflächenabstand 50 cm.	Ackerbau, Gemüsebau, Zierpflanzenbau, Grünland	LEC - Lechler GmbH	Druckbereich der Kombination von 1,0 bis 6,0 bar	Lechler GmbH Präzisionsdüsen - Tropfenabscheider, Ulmer Straße 128, 72555 Metzingen
90 %		⊘ V0301 - 03	⊙ G1882	Feldspritzgeräte mit Düse Lechler IDKT 120-03 POM	In einem 20 m breiten Randbereich mit einem Druck bis 1,5 bar spritzen, Zielflächenabstand 50 cm.	Ackerbau, Gemüsebau, Zierpflanzenbau, Grünland	LEC - Lechler GmbH	Druckbereich 1,0 bis 6,0 bar	Lechler GmbH Präzisionsdüsen - Tropfenabscheider, Ulmer Straße 128, 72555 Metzingen
90 %		⊘ V0367 - 03	⊙ G1932	Feldspritzgeräte mit Mischbestückung Düse Lechler IDKT 120-03 POM plus 6 x Lechler IDKN 120-03 POM	In einem 20 m breiten Randbereich nur mit einem Druck von 1,0 bar spritzen, Zielflächenabstand 50 cm.	Ackerbau, Gemüsebau, Zierpflanzenbau, Grünland	LEC - Lechler GmbH	Druckbereich der Kombination von 1,0 bis 6,0 bar, 6 x IDKN 120-03 POM zum Einbau im Mittelteil	Lechler GmbH Präzisionsdüsen - Tropfenabscheider, Ulmer Straße 128, 72555 Metzingen

Beispiel österreichische Abstandsauflagen Getreideherbizid Starane XL 10/5/5/1

Beispiel: Lechler IDKT 120-03, 200 l/ha, 5 km/h, 1,5 bar → 90% Regelabstand 10 m Böschungsoberkante 3 m bewachsener Pufferstreifen gem. NAPV und PSM Verbot gem. GLÖZ 4 Mindestabstand der 90 % Klasse 1 m unbehandelter Randstreifen mind. 20 m Anwendungsbestimmungen (18 m vom Pufferstreifen) einhalten, (Druck, Fahrgeschwindigkeit, Zielflächenabstand) Restfläche mit düsenangepasstem Druck spritzen für optimale Benetzung

Abstandsauflagen – digitaler Helfer "AgrarExact"

Noch nicht verfügbar!!!

Beispiel Düsenauswahl Ackerbaubetrieb 1 Düse als Kompromiss!

Kurze Injektordüse oder Injektordoppelflachstrahldüse Kaliber 03/04

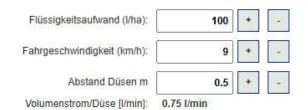
mit 75 oder 90% Abdriftminderungseinstufung

- → Kompromiss bei den verschiedenen Anwendungen in Bezug auf WA, FG, Tropfengröße und Abdrift, Leistungseinbußen in Kauf nehmen!
- → Bei Problemen mit Ungräsern Empfehlung zu Doppelflachstrahltechnik

Beispiel Düsenauswahl Ackerbau 2 oder 3 Düsen abgestimmt auf Anforderungen!

Foto: Hauer

- Injektordoppelflachstrahldüse 02/025:
 Totalherbizide, konzentrierte Herbizide in Getreide und Rübe, Ährenbehandlung
- kurze Injektordüse oder Injektordoppelflachstrahldüse 03/04 mit 75 oder 90 % Abdriftminderung als Standarddüse für die restlichen Anwendungen und gute Benetzung
- Lange Injektordüse 04/05 mit 90 %
 Abdriftminderung bei grenzwertiger
 Witterung (termingerechte Applikation)
 und für Bodenherbizide im Vorauflauf
 bzw. sehr früher NA, Flüssigdünger
- <u>oder</u> Vorauflaufdüse bzw. Flüssigdüngerdüse



Spezialfall: Anwendung Glyphosat

- Ziel: Gleichmäßige <u>Verteilung und Anlagerung</u> auf der Zielfläche
- Bindet sich an alles was im Wasser ist Aluminium, Calzium, Eisen,
 Magnesium, Mangan, Natrium und Zink, daher keine Dünger zugeben!
- Hohe Konzentration (wenig Wasser), weil dadurch mehr Wirkstoff für weniger freie Ionen im Wasser zur Verfügung steht
- Zitronensäure (ca. 100 g pro 100 l) oder <u>SSA</u> (mind. 1 %) zusetzen vor der Zugabe von Glyphosat um Kalk zu binden, ev. Netzmittel zusetzen

- → Konzentrierte Ausbringung mit 100 bis 200 l Wasser/ha
- → bei gleichzeitig guter Trefferquote mit mittleren bis groben Tropfen
- Applikationstechnik: <u>Doppelflachstrahltechnik</u>
- Düsen:
 - Kleinkalibrige Injektordoppelflachstrahldüsen

Düsenauswahl Glyphosatanwendung

Düsengröße		-015	-02	-025	-03	-04	-05	-06	-08	-10
Betriebsdruck (bar)		4.9	2.7	1.7	1.2					
Air-Injektor Flachstrahldüse ID3		000	50							
Asymmetrische Air-Injektor Doppelflachstrahldüse IDTA			00							i.
Air-Injektor Kompakt-Flachstrahldüse IDK		000		6	00					e.
Air-Injektor Kompakt-Flachstrahldüse IDKN										
Air-Injektor Kompakt-Doppelflachstrahldüse IDKT		50	000		00					
Mehrbereichs-Flachstrahldüse LU		000	000	000	000					
Antidrift-Flachstrahldüse AD		000	000		000					

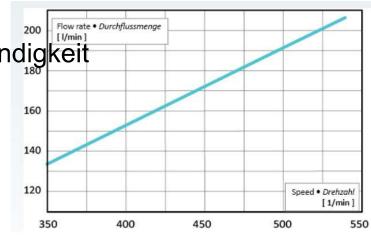
kurze ID 2 bis 4 (5) bar

lange ID 4 bis 7 (8) bar

Quelle: Lechler

Injektordoppelflachstrahldüsen 02 mit 90%

Quelle: Lechler, Teejet


Kleine Mengen bringen oft Probleme!

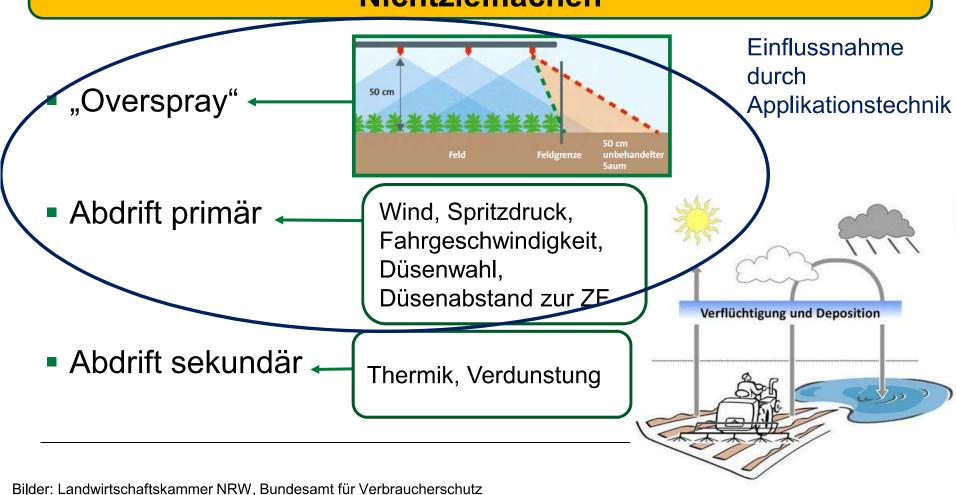
Beispiel: 1000 I Gerät, 15 m, Nennleistung Pumpe 200 I/min

konzentrierte Ausbringung Glyphosat

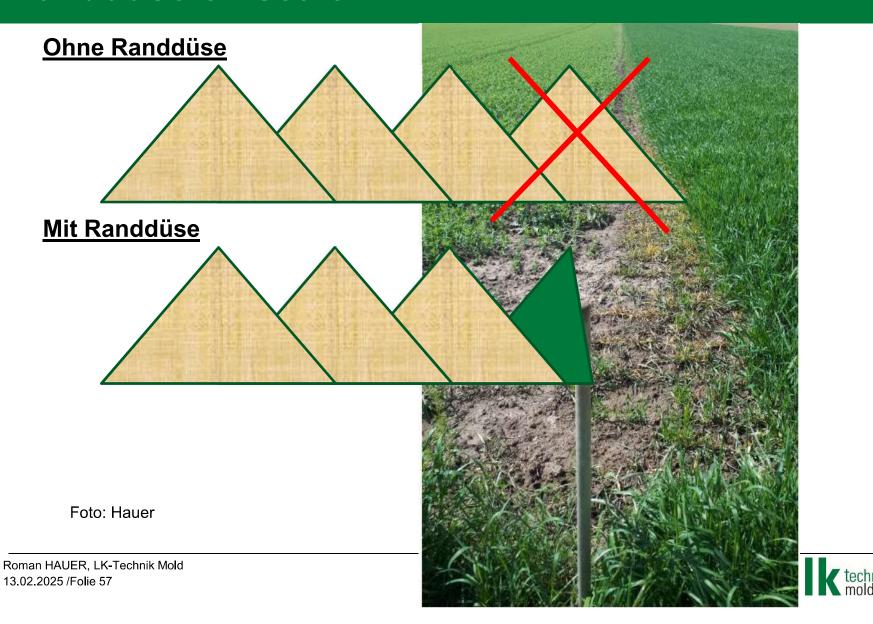
100 I/ha Aufwandmenge, 9 km/h Fahrgeschwindig keit Pumpendrehzahl 450 U/min

$$\frac{100 \times 15 \times 9}{600}$$
 = **22,5 l/min für Düsen**

200 l/min/540*450 = **167 l/min minus 22,5 l/min = 144,5 l/min**


Ca. 145 I/min Rücklauf in Behälter bzw. Saugbereich ->

häufig Probleme mit Schaumbildung, Brüheerwärmung, fahrgeschwindigkeitsabhängige Regelung funktioniert nicht ausreichend genau, niedrige Arbeitsdrücke oft nicht erreichbar!



Was passiert, wenn's passiert – Formen der Abdrift

Unbeabsichtigte Verfrachtung von PSM auf Nichtzielflächen

Fehler vermeiden - "Overspray" verhindern! Randdüse einsetzen!

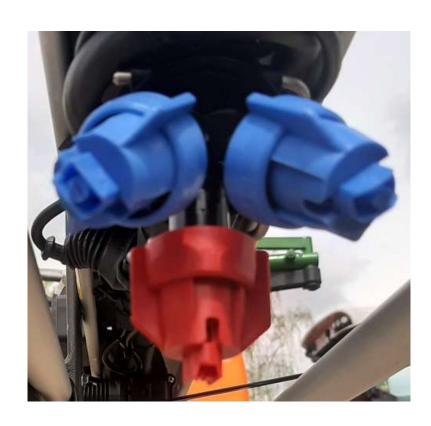
Randdüsen

Lechler

Agrotop

Lechler → gleiches Kaliber, andere Hersteller ein Kaliber kleiner wählen

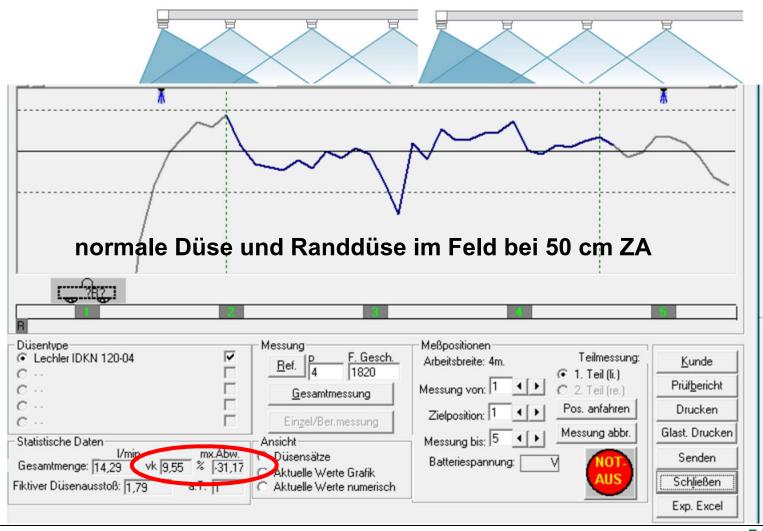
Teejet



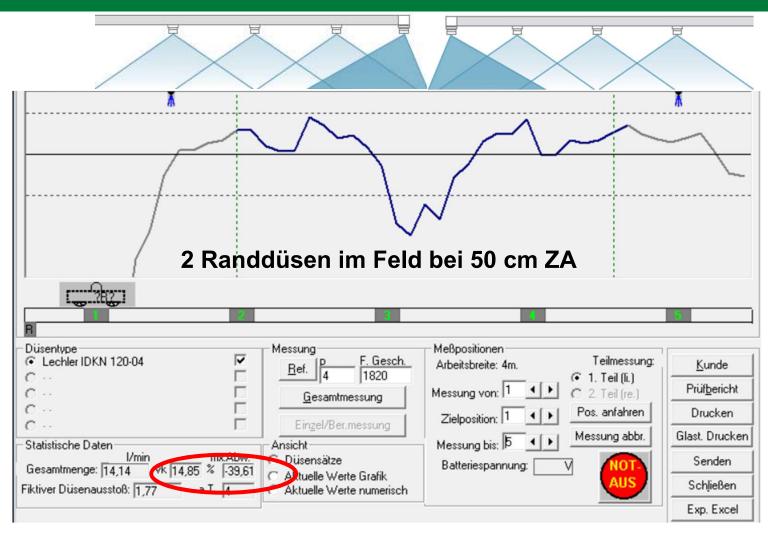
Roman HAUER, LK-Technik Mold 13.02.2025 /Folie 58

Quelle: Lechler

Randdüsenschaltung: Absteigen vs. Schaltung vom Fahrerplatz



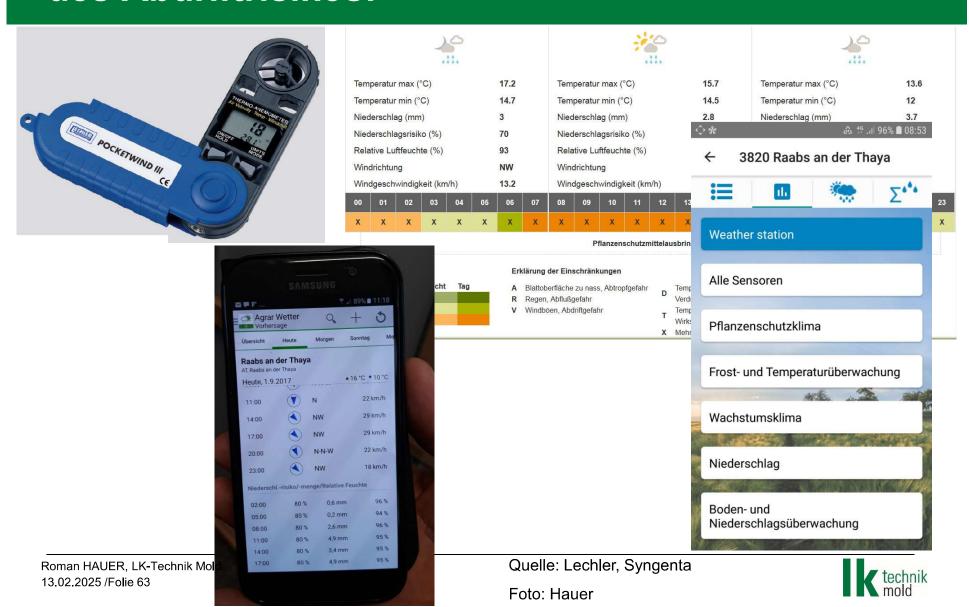
Ergebnis aus Versuchen: Randdüseneinsatz vermindert Abdrift



Fehler vermeiden – Randdüsen nur am Feldrand einsetzen!

Fehler vermeiden – Randdüsen nur am Feldrand einsetzen!

Maßnahmen zur Abdriftreduktion – Abdriftrisiko vor der Anwendung beurteilen


Applikation von PSM neben sensiblen Bereichen nur bei günstiger Witterung:

- Wind weht nicht in Richtung der sensiblen Bereiche
- Windgeschwindigkeiten möglichst unter 3 m/s, jedoch nie über 5 m/s
- Temperatur unter 25 °C
- Luftfeuchtigkeit über 50 (60)%

WINDGESCH DIGKEIT (m/s		INDIKATOREN
0	T	Rauch steigt gerade hoch
1		Rauch treibt ab
2–3	**	Wind auf dem Gesicht spürbar/Blätter rascheln
4–5		Blätter und Zweige bewegen sich, Fahnen flattern leicht
6–7		Kleine Äste bewegen sich

Moderne technische Hilfsmittel zur Beurteilung des Abdriftrisikos!

Maßnahmen zur Reduktion der direkten Abdrift bei der Anwendung!

- ✓ Düsentyp abdriftmindernde Injektordüsen einsetzen
- ✓ Düsengröße größere Düsenkaliber wählen

Standardflachstrahldüse

Lange Injektordüse

Roman HAUER, LK-Technik Mold 13.02.2025 /Folie 64

Quelle: Hardi

Foto: Hauer

Maßnahmen zur Reduktion der direkten Abdrift bei der Anwendung!

Weg vom Gas, dadurch wird automatisch...


der Spritzdruck reduziert

die Fahrgeschwindigkeit verringert

der Zielflächenabstand reduziert werden

"Gas weg" heißt Abdrift reduzieren!!!

IDKT 120 03 9,2 km/h, 5 bar

IDKT 120 03 5,8 km/h, 2 bar

https://youtu.be/bZFy iAimo0

Fehler vermeiden - Richtiger Zielflächenabstand

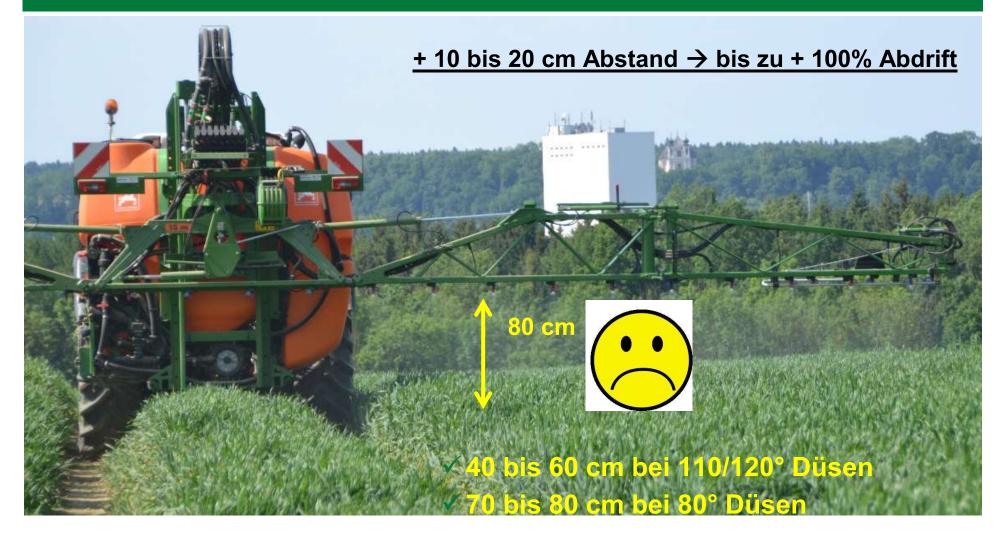
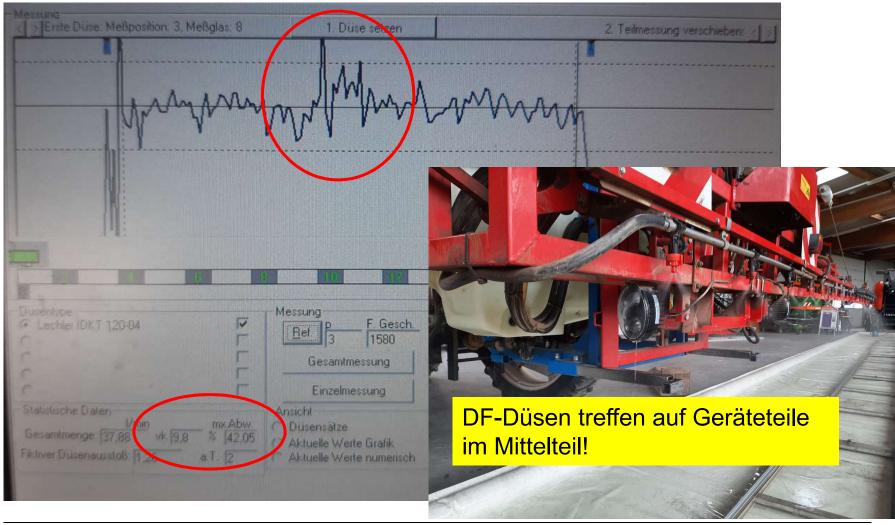


Foto: Köppl



Richtiger Zielflächenabstand?

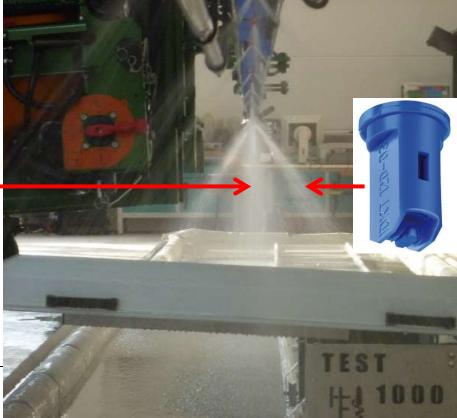
Fehler vermeiden

Abhilfe Mischbestückung – dabei auf die Abdriftminderungsklasse achten!

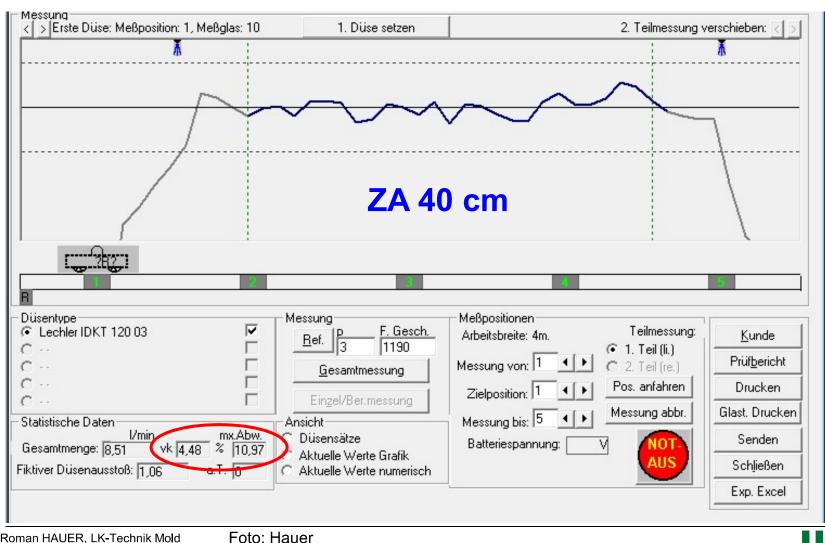
z.B.:

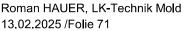
Lechler IDKT 120 03 POM + Lechler IDKN 120 03 POM → 90 % Abdriftminderung

→ Hilfsmittel Liste der abdriftmindernden Geräteteile


Quelle: Herbst,

Lechler


Zugelassene Mischbestückungen:


- Lechler IDKT mit IDK/IDKN
- Lechler IDTA mit ID
- Teejet AITTJ mit AI/AIC

Fehler vermeiden - Doppelflachstrahldüsen nicht zu hoch fahren!

Fehler vermeiden - Doppelflachstrahldüsen nicht zu hoch fahren!

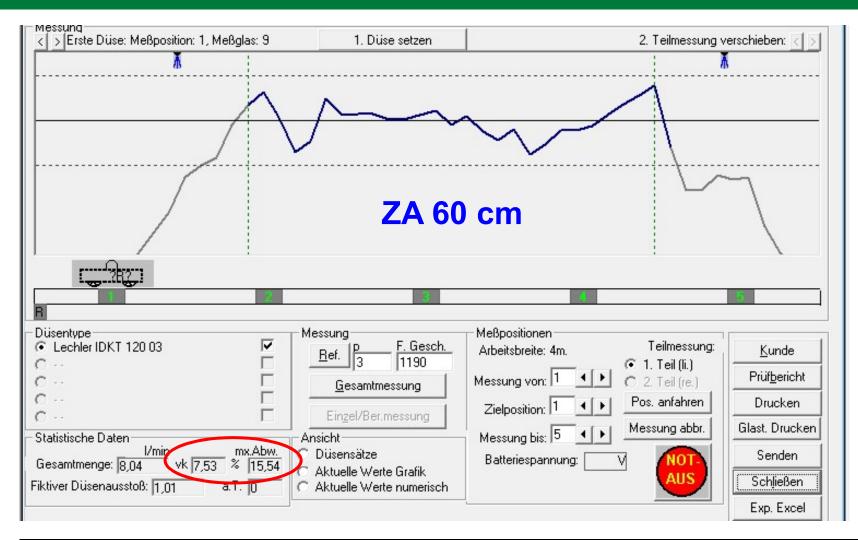


Foto: Hauer

Spritzencheck vor der Saison 1. Prüfplakette gültig und leserlich

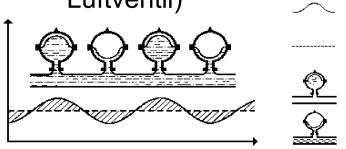
Foto: Hauer

Spritzencheck vor der Saison 2. Pumpe

- ✓ **Schmierung** → Ölstand kontrollieren, **Öl wechseln**, Abschmieren
- ✓ steigender oder fallender Ölstand bzw. milchig trübes Öl deutet auf Membranschaden hin
- ✓ **Dichtheit** → kein Austritt von Flüssigkeit aus Leckwasserbohrung usw.
- ✓ Luftfreies Ansaugen
- **Befestigung**

Foto: Hauer

Roman HAUER, LK-Technik Mold 13.02.2025 /Folie 74


Foto: Herbst, Hauer

Spritzencheck vor der Saison 3. Druckausgleichsbehälter

- ✓ Spritzdruck = ca. Luftdruck im Kessel!
- ✓ zu hoher oder zu niedriger Membrankesseldruck verursacht
 - ✓ starkes Flattern des Manometerzeigers
 - ✓ eventuell blinkende Spritzfächer der Düsen
 - √ schlagende Pumpengeräusche

Foto: Hauer

✓ defekte Kesselmembran tauschen (Flüssigkeit spritzt aus dem Luftventil)

Spritzencheck vor der Saison 4. Druckanzeige/Manometer

Grundsätzlich sind alle Manometer frostfrei zu lagern!

Sichtbarkeit Skalenteilung Schäden

Spritzencheck vor der Saison 5. Armatur

- ✓ Funktion der Schaltventile und Druckregler kontrollieren
- ✓ Gleichdruckrücklauf: Überprüfung vor der Saison und einstellen bei:
- ✓ Düsenwechsel (Änderung der Düsengröße)
- ✓ Druckänderung beim Schalten von Teilbreiten bedingt durch
 - ✓ Düsenverschleiß
 - Ablagerungen

Foto: Hauer

Spritzencheck vor der Saison 6. Rührwerk

Sichtprüfung Rührwerksfunktion wenn die Spritze halb voll ist und die Düsen spritzen (**sichtbare Umwälzung**)

... und die Spritze leer ist (Ablagerungen)

Spritzencheck vor der Saison 7. Filter kontrollieren und ggf. reinigen!

Druckfilter = feinstes Filter am Gerät!

Roman HAUER, LK-Technik Mold 13.02.2025 /Folie 79

Foto: Hauer

Filterempfehlung (unbedingt Angaben vom Düsenhersteller beachten!)

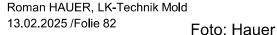
	Düsengröße	Saugfilter	Druckfilter	(Düsenfilter)
	<u>></u> 05	32 mesh Rot	50 mesh Blau	32 (24)mesh
	02 bis 04	32 mesh Rot	80 mesh Gelb	50 mesh Blau
	< 02	32 mesh Rot	100 mesh Grün	50 bis 100 mesh

Spritzencheck vor der Saison 8. Dosierung kontrollieren

- ✓ Spritze mit Wasser füllen
- ✓ Hauptventil und Teilbreiten öffnen
- ✓ Druck einstellen
- ✓ I/min am Terminal ablesen
- ✓ Ausstoß von 2 Düsen pro TB messen und Durchschnitt errechnen
- ✓ durchschnittlichen Düsenausstoß mit Anzahl der Düsen multiplizieren
- √ → I/min mit Wert am Terminal vergleichen
- ✓ Bei großen Abweichungen Fehler suchen!
- ✓ Impulszahl im Terminal korrigieren!

Foto: Pichler

Korrekte Dosierung durch Kontrolle! Einstellen – Auslitern - Kalibieren

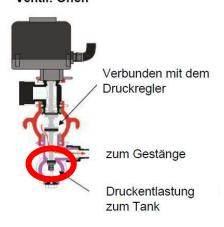


Düsenmethode

ermittelten I/min-Wert eingeben oder mit angezeigtem Wert vergleichen und Impulszahl korrigieren



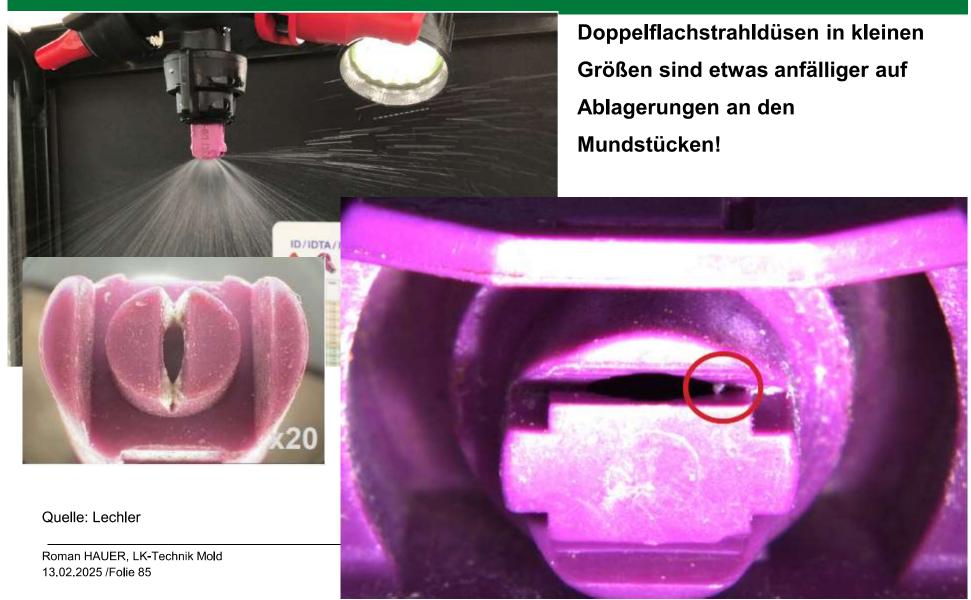
Spritzencheck vor der Saison 9. Kontrolle auf "innere" Leckagen


Zu viel ausgebraucht → falsche Einstellung/Kalibrierung

Zu wenig ausgebracht → fehlerhafte Technik

Ventil: Offen

Roman HAUER, LK-Technik Mold 13.02.2025 /Folie 83


Spritzencheck vor der Saison 10. Kontrolle Düsenverschleiß

- 1. Eine neue Düse einbauen und Ausstoß bei Prüfdruck messen
- 2. Gemessener Ausstoß (=Referenzwert) + Toleranz 15% = Toleranzwert
- 3. 2 Düsen pro Teilbreite messen und mit Toleranzwert vergleichen
- 4. Messwert > Toleranzwert = Düsentausch
- → Daher immer eine neue Düse als Referenz bereithalten!

Foto: Pichler

Spritzencheck vor der Saison: Sichtkontrolle der Spritzfächerausbildung!

Ablagerungen verhindern durch...

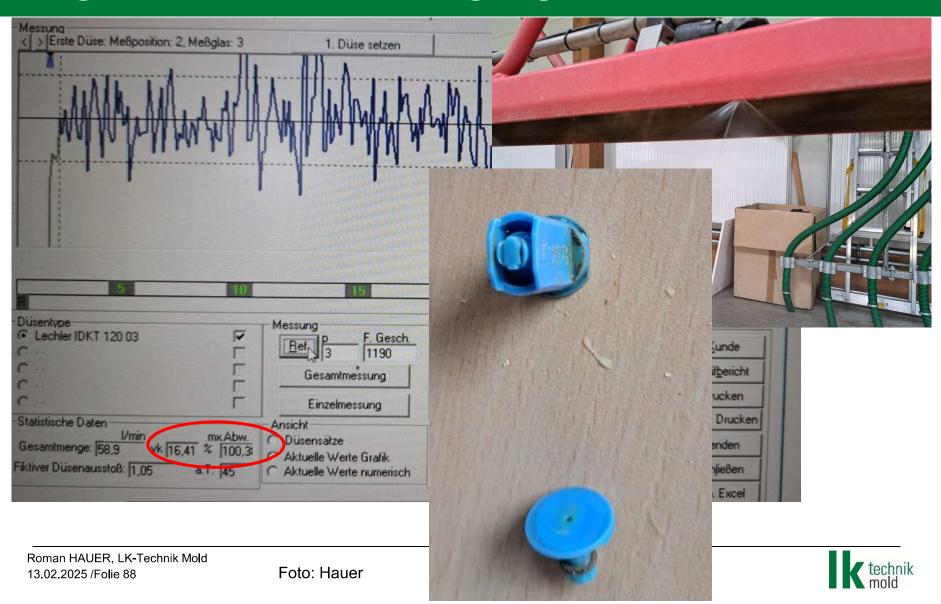
- Restmenge sofort nach dem Einsatz in Teilschritten mit Wasser verdünnen und übers Gestänge ausspritzen
- bei längeren Arbeitsunterbrechungen und nach bekannt kritischen Mitteln Gestänge mit Wasser spülen
- richtige Filterausstattung

Foto: Hauer

Empfehlung vor der Saison: Filter und Düsen ausbauen und reinigen!!!

Für eine gründliche Düsenreinigung Injektoreinsatz herausnehmen!

- Einweichen mit warmen Wasser und Reiniger
- anschließend Druckluft besser als
- Bürste (Kunststoffdüsen empfindlich)
- Chemiebad bei hartknäckigen Ablagerungen
- alternativ Ultraschallreinigung



Querverteilungsmessung 27 m, IDKT 120 03 – Ergebnis vor Düsenreinigung

Düsenreinigung mit Ultraschall

Querverteilungsmessung 27 m, IDKT 120 03 – Ergebnis nach Düsenreinigung mit Ultraschall

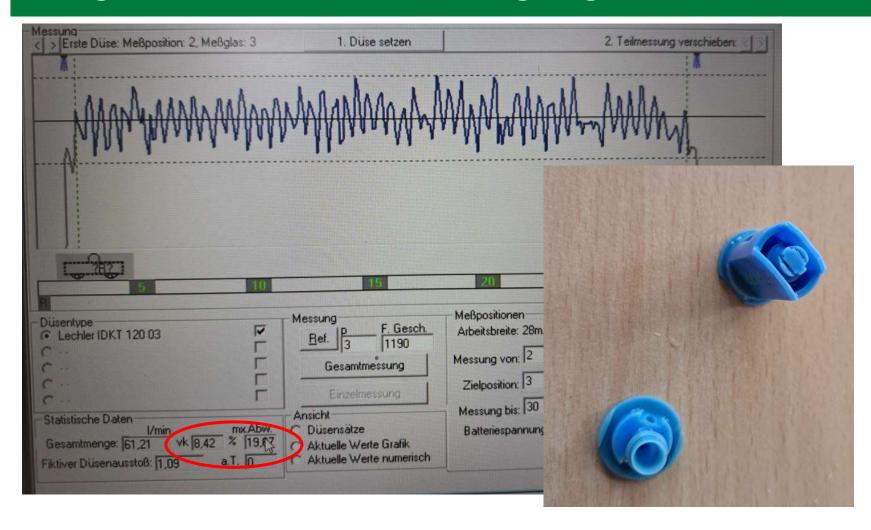
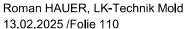


Foto: Hauer

Zusammenfassung


- WA und FG auf die Zielfläche abstimmen
- Düsentechnik optimieren
- Abdriftminderungsauflagen einhalten
- Fehler vermeiden, Wartung nicht vergessen!!!
- ✓ Ein gut abgestimmte Applikationstechnik kann die Wirkung der PSM unterstützen und absichern, aber nicht ersetzen!
- ✓ Eine <u>falsch abgestimmte Applikationstechnik vermindert oft die</u>
 <u>Wirkung</u> oft deutlich und <u>fördert die Resistenzbildung!</u>
- ✓ Ursache für Fehler bei der Anwendung ist selten die Technik aber oft der Anwender!

Erfolg im Pflanzenschutz - Es gibt die großen technischen Lösungen...

Quelle: Amazone

...und die kleinen Bausteine!

Vielen Dank für die Aufmerksamkeit!

- www.lk-technik.at
- Roman Hauer, Feldspritzgeräte
- roman.hauer@lk-noe.at
- 05 0259 292-13

